Let's talk a little bit about bridges, like in graph theory. In a nutshell, an edge is called a bridge if its removal increases the number of connected components. In a connected graph, if I were to remove a bridge, it would not be connected anymore, see ? .

## Problem

The problem is 1026 - Critical Links, it's literally finding bridge edges, it's a good problem to test your implementation before solving problems where this algorithm is just a part of the solution.

## Solution

Next is my implementation in C++:
        /* Copyright 2016 Rafael Rendón Pablo <rafaelrendonpablo@gmail.com> */
// region Template
#include <bits/stdc++.h>
using namespace std;
typedef long long           int64;
typedef unsigned long long  uint64;
const double kEps   = 10e-8;
const int kMax      = 10005;
const int kInf      = 1 << 30;
// endregion
vector<int> graph[kMax];
bool visited[kMax];
int discovery[kMax];
int low[kMax];

void find_bridges(int u, int& t, int p, vector<pair<int, int> >& links) {
visited[u] = true;
low[u] = t;
discovery[u] = t;
t++;
for (int i = 0; i < int(graph[u].size()); i++) {
int v = graph[u][i];
if (!visited[v]) {
find_bridges(v, t, u, links);
low[u] = min(low[u], low[v]);
if (low[v] > discovery[u]) {
links.push_back(make_pair(min(u, v), max(u, v)));
}
} else if (v != p) {
low[u] = min(low[u], low[v]);
}
}
}

int main() {
int T;
scanf("%d", &T);
for (int tc = 1; tc <= T; tc++) {
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
graph[i].clear();
int u, k;
scanf("%d (%d)", &u, &k);
for (int j = 0; j < k; j++) {
int v;
scanf("%d", &v);
graph[u].push_back(v);
}
}
printf("Case %d:\n", tc);
fill(visited, visited + n, false);
fill(discovery, discovery + n, 0);
fill(low, low + n, 0);
vector<pair<int, int> > clinks;
for (int u = 0; u < n; u++) {
if (visited[u]) {
continue;
}
int time = 0;
int parent = -1;
find_bridges(u, time, parent, clinks);
}